Entscheidender Schritt des Spinnvorgangs aufgeklärt: Wie spinnt die Spinne?

Wissenschaftler der Universität Bayreuth und der Technischen Universität München erfolgreich

Mikroskopaufnahme einer Faser bestehend aus dem künstlichen Spinnenseidenprotein eADF4(C16). © John G. Hardy, 2010, Universität Bayreuth.

Fünfmal so reißfest wie Stahl und dreimal so fest wie die derzeit besten synthetischen Fasern: Spinnenseide ist ein faszinierendes Material. Doch niemand kann bisher die Super-Fäden technisch herstellen. Wie schafft es die Spinne, aus den im Inneren der Spinndrüse gespeicherten Spinnenseidenproteinen in Sekundenbruchteilen lange, hochstabile und elastische Fäden zu ziehen? Diesem Geheimnis sind Wissenschaftler der Universität Bayreuth (UBT) und der Technischen Universität München (TUM) nun auf die Spur gekommen. In der aktuellen Ausgabe des renommierten Wissenschaftsjournals Nature stellen sie ihre Ergebnisse vor.

„Die hohe Elastizität und extreme Reißfestigkeit der natürlichen Spinnenseide erreichen selbst Fasern aus reinem Spinnenseiden-Protein bisher nicht,“ sagt Professor Horst Kessler, Carl-von-Linde-Professor am Institute for Advanced Study der TU München (TUM-IAS). Daher ist eine Schlüsselfrage bei der künstlichen Herstellung stabiler Spinnenseide-Fäden: Wie schafft es die Spinne, das Rohmaterial in der Spinndrüse in hoher Konzentration bereit zu halten und bei Bedarf in Bruchteilen einer Sekunde daraus einen reißfesten Faden zu ziehen? Professor Thomas Scheibel, Inhaber des Lehrstuhls Biomaterialien der Universität Bayreuth, bis 2007 an der TU München tätig, ist dem Geheimnis der Spinnenseiden seit einigen Jahren auf der Spur.

Spinnenfäden bestehen aus Eiweißmolekülen, langen Ketten, die aus Tausenden von Aminosäure-Bausteinen aufgebaut sind. Röntgenstreuungsexperimente zeigen, dass sich im fertigen Faden Bereiche befinden, in denen mehrere Eiweißketten über stabile physikalische Bindungen miteinander vernetzt sind. Sie bewirken die Stabilität. Dazwischen befinden sich unvernetzte Bereiche, sie sind für die hohe Elastizität verantwortlich. In der Spinndrüse herrschen ganz andere Verhältnisse: In einer wässrigen Umgebung lagern hier die Seiden-Proteine in hoher Konzentration und warten auf ihren Einsatz. Die für die festen Quervernetzungen verantwortlichen Bereiche dürfen sich dabei nicht zu nahe kommen, da sonst die Eiweiße augenblicklich verklumpen würden. Es musste also eine Art Speicherform dieser Moleküle geben.

Die sonst so erfolgreiche Röntgenstrukturanalyse konnte zur Aufklärung nichts beitragen, da sie nur Kristalle analysieren kann. Bis zu dem Moment, an dem der feste Faden entsteht, spielt sich jedoch alles in Lösung ab. Die Untersuchungsmethode der Wahl war daher die Kernmagnetische Resonanz-Spektroskopie (NMR). An den Geräten des Bayerischen NMR-Zentrums gelang es dem Biochemiker Franz Hagn aus der Arbeitsgruppe von Horst Kessler, die Struktur eines Regulationselements aufzuklären, das für die Bildung des festen Fadens verantwortlich ist. Zusammen mit Lukas Eisoldt und John Hardy aus der Gruppe von Thomas Scheibel konnte darüber hinaus die Wirkungsweise dieses Regulationselements aufgeklärt werden.

„Unter den Speicherbedingungen in der Spinndrüse sind immer zwei dieser Regulationsbereiche so miteinander verknüpft, dass die quervernetzenden Bereiche beider Ketten nicht parallel zueinander liegen können,“ erläutert Thomas Scheibel die Ergebnisse. „Die Vernetzung ist damit wirkungsvoll unterbunden.“ Die Eiweißketten lagern sich dann so zusammen, dass polare Bereiche außen sind und die Wasser abweisenden Teile der Kette innen. Dies stellt die gute Löslichkeit in der wässrigen Umgebung sicher.