Universität Bayreuth: Magnetismus im Erdmantel entdeckt

Symbolbild Bildung

Neue Erkenntnisse über das Erdmagnetfeld: Forscher zeigen, dass das Eisenoxid Hämatit tief im Erdmantel magnetisch ist / Studie in „Nature“.

Das Innere der Erde grafisch dargestellt. Die gestrichelten blauen Linien zeigen das Magnetfeld, das die Erde umgibt. Die Forscher pressten und erhitzten Proben des im Erdmantel vorkommenden Eisenoxids Hämatit zwischen zwei Diamanten (rechts), um die extremen Bedingungen im Erdmantel nachzustellen. Sie beobachteten, dass das Eisenoxid unter diesen Bedingungen magnetisch ist. Bild: Timofey Fedotenko.

Das Innere der Erde grafisch dargestellt. Die gestrichelten blauen Linien zeigen das Magnetfeld, das die Erde umgibt. Die Forscher pressten und erhitzten Proben des im Erdmantel vorkommenden Eisenoxids Hämatit zwischen zwei Diamanten (rechts), um die extremen Bedingungen im Erdmantel nachzustellen. Sie beobachteten, dass das Eisenoxid unter diesen Bedingungen magnetisch ist. Bild: Timofey Fedotenko.

Das riesige Magnetfeld, das die Erde umgibt, sie vor Strahlen und geladenen Teilchen aus dem All schützt und an dem sich viele Tiere sogar orientieren können, ist in ständigem Wandel – weshalb es auch unter ständiger Beobachtung von Geowissenschaftlern ist. Die altbekannte Quelle des Erdmagnetfelds ist der bis etwa 6.000 Kilometer im Erdinneren liegende Kern. Der Erdmantel hingegen, 35 bis 2.900 Kilometer tief, wurde bisher weitestgehend als „magnetisch tot“ angesehen. Ein internationales Forscherteam aus Deutschland, Frankreich, Dänemark und den USA hat nun gezeigt, dass eine Form des Eisenoxids, das Hämatit, auch tief im Erdmantel seine magnetischen Eigenschaften behalten kann. Das passiert in verhältnismäßig kalten Gesteinsplatten, die vor allem unter dem Westpazifischen Ozean vorkommen.

„Das neue Wissen über den Erdmantel und die stark magnetische Region im Westpazifik könnte ein neues Licht auf die Beobachtungen des Erdmagnetfelds werfen“, sagt Mineralphysiker und Erstautor Dr. Ilya Kupenko vom Institut für Mineralogie an der Westfälischen Wilhelms-Universität Münster (WWU), der an der Universität Bayreuth promoviert wurde und hier als Postdoc am Bayerischen Geoinstitut (BGI) geforscht hat. Die Erkenntnisse können zum Beispiel für zukünftige Beobachtungen der erdmagnetischen Auffälligkeiten relevant sein. Darüber hinaus könnten sie auch Aufschlüsse über den Magnetismus anderer Planeten wie Mars geben. Der Grund: Mars besitzt keinen sogenannten Dynamo in seinem Kern mehr und damit auch keine Quelle, um ein starkes Magnetfeld wie die Erde aufzubauen – es könnte sich nun aber lohnen, einen genaueren Blick auf seinen Mantel zu werfen. Die Studie ist in der Fachzeitschrift „Nature“ erschienen.

Hintergrund und Methode:

Tief im metallischen Erdkern ist es flüssiges Eisen, das elektrische Ströme auslöst. In der äußersten Erdkruste sind Gesteine vom magnetischen Feld magnetisiert. Aufgrund der sehr hohen Temperaturen und Druckbedingungen in den tieferen Regionen des Erdinneren war angenommen worden, dass Gesteine ihre magnetischen Eigenschaften verlieren. Die Forscher sahen sich nun die potenziellen Quellen für Magnetismus im Erdmantel genauer an: Eisenoxide, die eine hohe kritische Temperatur aufweisen – sprich die Temperatur, ab der Materialien ihre magnetischen Eigenschaften verlieren. Eisenoxide treten im Erdmantel in Gesteinsplatten auf, die durch Plattenverschiebungen von der Erdkruste weiter in den Mantel gedrückt wurden. Die Platten können eine Tiefe zwischen 410 und 660 Kilometer im Erdinneren erreichen, die sogenannte Übergangszone zwischen dem oberen und unteren Erdmantel. Bisher war es allerdings nicht gelungen, die magnetischen Eigenschaften des Eisenoxids während der extremen Druck- und Temperaturbedingungen zu messen, die dort unten herrschen.

Nun kombinierten die Wissenschaftler zwei Methoden miteinander. Mithilfe einer sogenannten Diamantstempelzelle, einem Verfahren, bei dem sehr kleine Materialproben zwischen zwei Diamanten zusammengepresst werden, übten sie einen Druck von bis zu 90 Gigapascal auf das Eisenoxid Hämatit aus. Zusätzlich erhitzten sie die winzige Gesteinsprobe mit einem Laser auf bis zu mehr als 1.000 Grad Celsius. Dieses Verfahren kombinierten sie mit der sogenannten Mößbauer-Spektroskopie, bei der mithilfe von Synchrotron-Strahlen der magnetische Zustand der Proben untersucht werden kann. „Die Idee, diese beiden Methoden zu verknüpfen, haben wir am Bayerischen Geoinstitut im Rahmen eines vom BMBF geförderten Projekts entwickelt und ausgearbeitet“, sagt Co-Autorin Dr. Catherine McCammon vom BGI. Die spektroskopischen Untersuchungen wurden dann in der Synchrotronanlage ESRF in Grenoble (Frankreich) durchgeführt und machten es möglich, die Veränderungen des Eisenoxids zu beobachten.

Das überraschende Ergebnis: Das Hämatit blieb magnetisch bis zu einer Temperatur von rund 925 Grad – der Temperatur, die am Ort ihres Vorkommens in den „abgetauchten“ Platten im Erdmantel unter dem Pazifischen Ozean herrscht. „Damit zeigen wir, dass der Erdmantel bei weitem nicht so ,magnetisch tot‘ ist, wie zuvor angenommen“, sagt Prof. Dr. Carmen Sanchez-Valle vom Institut für Mineralogie der WWU. „Diese Erkenntnisse könnten Schlussfolgerungen für das gesamte Magnetfeld der Erde zulassen.“

Relevanz für Untersuchungen des Erdmagnetfelds und der Bewegung der Pole

Forscher beobachten das Erdmagnetfeld und die ständigen lokalen und regionalen Veränderungen in der magnetischen Stärke, indem sie Satelliten einsetzen und Gesteine untersuchen. Hintergrund: Die geomagnetischen Pole der Erde – nicht zu verwechseln mit den geografischen Polen – sind laufend in Bewegung. Infolge ihrer Wanderung haben sie in der jüngeren Erdgeschichte sogar alle paar hunderttausend Jahre ihre Position miteinander getauscht. Der letzte Polsprung ereignete sich vor 780.000 Jahren, und seit ein paar Jahrzehnten berichten Wissenschaftler davon, dass sich die magnetischen Pole der Erde schneller bewegen. Ein Umdrehen der Magnetpole hätte Auswirkungen auf die moderne menschliche Zivilisation, zum Beispiel wären Satelliten weniger geschützt und die Funktion von Stromnetzen bedroht. Eine der beobachteten Routen der Pole bei ihrer Wanderung verläuft über den Westpazifik – und stimmt damit auffällig mit den nun aufgedeckten elektromagnetischen Quellen im Erdmantel überein. Daher ziehen die Forscher die Möglichkeit in Betracht, dass die im Pazifik beobachteten Magnetfelder nicht die Wanderungsroute der auf der Erdoberfläche gemessenen Pole darstellen, sondern von der bisher unbekannten elektromagnetischen Quelle der Hämatit-haltigen Gesteine im Erdmantel unter dem Westpazifik stammen.

„Das neue Wissen, dass es dort unten im Erdmantel magnetisch geordnete Materialien gibt, sollte bei zukünftigen Untersuchungen des Magnetfelds der Erde und der Bewegung ihrer Pole miteinbezogen werden“, sagt Co-Autor Prof. Dr. Leonid Dubrovinsky vom Bayerischen Geoinstitut der Universität Bayreuth.

Förderung:

Die Studie erhielt finanzielle Unterstützung durch die Westfälische Wilhelms-Universität Münster (WWU), die Deutsche Forschungsgemeinschaft und das Bundesministerium für Bildung und Forschung.

Originalpublikation:

I. Kupenko, G. Aprilis, D.M. Vasiukov, C. McCammon, S. Chariton, V. Cerantola, I. Kantor, A.I. Chumakov, R. Rüffer, L. Dubrovinsky, and C. Sanchez-Valle (2019): Magnetism in cold subducing slabs at mantle transition zone depths. Nature; DOI: 10.1038/s41586-019-1254-8