Ein biotechnologischer Forschungserfolg: Neue hocheffiziente Polymere für die Gentherapie
Gentherapien: Auf der Suche nach sicheren und zugleich effizienten Verfahren
Bei allen gentherapeutischen Verfahren geht es darum, fehlende Gene zu ergänzen, defekte Gene zu ersetzen oder zumindest die Folgen derartiger Schäden zu kompensieren. Dazu ist es erforderlich, die in der DNA gespeicherten Gene in die Zellkerne einzuführen, wo sich die Erbinformation befindet. Damit die DNA-Moleküle von außen in die Zellen hineinkommen, müssen sie von anderen Substanzen dorthin transportiert werden. Diese Transporteure der Gene werden als „Vektoren“ bezeichnet, der Übertragungsvorgang als „Transfektion“.
In der Biotechnologie und der Medizin kommen sehr verschiedenartige Vektoren zum Einsatz. Einige Verfahren arbeiten mit Viren, andere mit nicht-viralen Vektoren. Viren haben sich seit Jahrmillionen darauf spezialisiert, Gene effizient in verschiedenste Zellen einzuschleusen. Doch sie sind möglicherweise infektiös oder können Immunreaktionen auslösen. Auch sind bei der Verwendung viraler Vektoren bereits Fälle von Blutkrebs aufgetreten. Umgekehrt verhält es sich mit den nicht-viralen Vektoren, die in der Gentherapie bisher verwendet werden: Sie sind sicherer, aber deutlich weniger effizient. Insbesondere sind sie kaum dazu fähig, Gene in ausdifferenzierte Zellen und sich nicht mehr teilende Zellen einzuschleusen.
Ein neuartiges gentherapeutisches Verfahren ist die RNA-Interferenz-Therapie. Sie ist angezeigt, wenn einzelne Gene zu aktiv sind. Dem lässt sich entgegenwirken, indem Ribonukleinsäure (RNA) in die Zelle eingeschleust wird. Doch hierfür gibt es bisher kein wirklich effizientes Transfektionsmittel, denn Viren oder andere natürliche Vektoren sind für diese Therapieform ungeeignet.
Erfolgreiche Forschung: Vom interdisziplinären Projekt zum Patent
In dieser Situation haben Prof. Dr. Ruth Freitag, Lehrstuhl für Bioprozesstechnik, und Prof. Dr. Axel Müller, Lehrstuhl für Makromolekulare Chemie II, und ihre Mitarbeiter an der Universität Bayreuth einen Forschungserfolg erzielt, der die Anwendung gentherapeutischer Verfahren erheblich voranbringen kann. In einer fächerübergreifenden Zusammenarbeit haben sie neuartige nicht-virale Vektoren entwickelt. In allen Tests an lebenden Zellen haben sich diese Vektoren als sicher und zugleich als effizient erwiesen.
Die Bayerische Patentallianz (BayPAT), als zentrale Patent- und Vermarktungsagentur der bayerischen Hochschulen, hat die Erfindung für die Universität Bayreuth mit positivem Ergebnis evaluiert. Die Erfindung wurde daher von der BayPAT im Namen der Universität Bayreuth bereits zum Patent angemeldet. Die Erfinderberatung der Universität Bayreuth mit Dr. Andreas Kokott und Dr. Heinz-Walter Ludwigs war an der Vorbereitung der Patentanmeldung wesentlich beteiligt.
Große sternförmige Moleküle als hocheffiziente Vektoren
Die neuen nicht-viralen Vektoren bestehen aus einem kugelförmigen Nanopartikel im Zentrum und aus zahlreichen Armen, die an das Nanopartikel angehängt sind. Die Arme zeigen wie die Strahlen eines Sterns in alle Richtungen. Sie sind positiv geladen und können deshalb große Mengen an negativ geladener DNA aufnehmen.
Chemisch gesehen, handelt es sich bei diesen Molekülen um positiv geladene Sternmoleküle aus PDMAEMA. Die Abkürzung steht für „Poly(2-(dimethylamino)ethylmethacrylat)“. Der sternförmigen Struktur der Moleküle ist es zu verdanken, dass sie überhaupt als Vektoren infrage kommen. Lineare Moleküle mit einer ebenso großen Molekülmasse wären hochtoxisch und daher prinzipiell ungeeignet.
Die sternförmigen Vektoren, die in den Laboratorien der Bayreuther Makromolekularen Chemie synthetisiert wurden, sind keineswegs ein teures Kunstprodukt. „Es gibt inzwischen moderne Verfahren, mit denen PDMAEMA-Sterne in großen Mengen und relativ kostengünstig hergestellt werden können“, berichtet Professor Axel Müller. „Die bisher verwendeten hochregulär aufgebauten Dendrimere sind deutlich aufwändiger und damit teurer herzustellen.“
Neue Möglichkeiten für die Biomedizin: Nicht-virale Vektoren statt Viren
Für die Biomedizin eröffnen sich mit dieser Entwicklung völlig neue Möglichkeiten. Denn ein zentrales Ergebnis der Bayreuther Forschungsarbeiten lautet: Die neuen PDMAEMA-Sterne können mit hoher Effizienz auch solche Zellen transfizieren, bei denen bisher nur Viren als effiziente Vektoren infrage kamen. Es handelt sich dabei um differenzierte Zellen, sich nicht mehr teilende Zellen und menschliche Blutzellen. Mit den PDMAEMA-Sternen zeichnet sich nun ein Weg ab, Viren durch nicht-virale Vektoren zu ersetzen – genauso wirkungsvoll, aber ohne die spezifische Sicherheitsproblematik, die mit dem Einsatz von Viren unvermeidlich einhergeht. Vor allem die Transfektion von T-Lymphozyten ist für die Humanmedizin attraktiv. Denn T-Lymphozyten sind diejenigen Blutzellen, die in entscheidender Weise zur Immunabwehr des Menschen beitragen.
Und noch in einer weiteren Hinsicht eröffnen PDMAEMA-Sterne vielversprechende Perspektiven. Sie eignen sich, wie die Bayreuther Wissenschaftler herausfanden, ebenfalls für die RNA-Interferenz-Therapie.
Eindeutige Erfolgsbilanz: Die neuen Vektoren im Vergleich mit PEI
Das Bayreuther Forschungsteam wollte Klarheit darüber gewinnen, wie die Leistungsfähigkeit der neuen Vektoren im Hinblick auf den aktuellen Stand der Technik einzuschätzen ist. Daher haben sie die PDMAEMA-Sterne speziell mit derjenigen Substanz verglichen, die sich als nicht-viraler Vektor bisher am besten bewährt hat. Es handelt sich hierbei um linear aufgebautes Polyethylenimin (PEI). Eine Größe von 25 kg/mol gilt für Transfektionen als optimal. Sehr unterschiedliche Zellarten wurden daher einerseits mit PEI-Molekülen dieser Größe, andererseits mit PDMAEMA-Sternen transfiziert. Die Untersuchungen erstreckten sich beispielsweise auf CHO-Zelllinien, die aus den Eierstöcken von Chinesischen Hamstern (Chinese Hamster Ovaries) stammen und für die biotechnologische Herstellung von Wirkstoffen wichtig sind. Aber auch spezielle humane Zelllinien, die bei der Entwicklung von Virenimpfstoffen und Chemotherapeutika verwendet werden, und primäre Blutzellen wurden transfiziert.
Die Bilanz dieser vergleichenden Untersuchungen ist eindeutig. „In allen Fällen haben wir mit den neuen PDMAEMA-Sternen eine bessere – deutlich bessere – Transfektionseffizienz als mit PEI erzielt“, erklärt Professor Ruth Freitag.
Vom Irrtum zur Innovation
Was hat die Bayreuther Wissenschaftler auf die Idee gebracht, ausgerechnet PDMAEMA-Sterne als Vektoren zu testen? Haben theoretische Überlegungen die Vermutung genährt, diese Moleküle könnten sich für Gentherapien eignen? „Ganz im Gegenteil“, berichtet Professor Ruth Freitag. „Wir waren davon überzeugt, dass PDMAEMA-Sterne wegen ihrer Größe viel zu toxisch sind, um für Transfektionen in Frage zu kommen. Das war auch die allgemeine, unhinterfragte Einschätzung in der Fachwelt. Mit unseren Tests wollten wir diesen Konsens bestätigen. Aber so ist das in der Forschung: Sie ist meistens dann innovativ, wenn etwas völlig anderes herauskommt als man erwartet hat.“
Neueste Kommentare